Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 468
Filtrar
1.
Molecules ; 29(6)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38542865

RESUMO

Carotenoids are hydrophobic pigments produced exclusively by plants, fungi, and specific microbes. Microalgae are well suited for the production of valuable carotenoids due to their rapid growth, efficient isoprenoid production pathway, and ability to store these compounds within their cells. The possible markets for bio-products range from feed additives in aquaculture and agriculture to pharmaceutical uses. The production of carotenoids in microalgae is affected by several environmental conditions, which can be utilized to enhance productivity. The current study focused on optimizing the extraction parameters (time, temperature, and extraction number) to maximize the yield of carotenoids. Additionally, the impact of various nitrogen sources (ammonia, nitrate, nitrite, and urea) on the production of lutein and loroxanthin in Scenedesmus obliquus was examined. To isolate the carotenoids, 0.20 g of biomass was added to 0.20 g of CaCO3 and 10.0 mL of ethanol solution containing 0.01% (w/v) pyrogallol. Subsequently, the extraction was performed using an ultrasonic bath for a duration of 10 min at a temperature of 30 °C. This was followed by a four-hour saponification process using a 10% methanolic KOH solution. The concentration of lutein and loroxanthin was measured using HPLC-DAD at 446 nm, with a flow rate of 1.0 mL/min using a Waters YMC C30 Carotenoid column (4.6 × 250 mm, 5 µm). The confirmation of carotenoids after their isolation using preparative chromatography was achieved using liquid chromatography-tandem mass spectrometry (LC-MS/MS) with an atmospheric pressure chemical ionization (APCI) probe and UV-vis spectroscopy. In summary, S. obliquus shows significant promise for the large-scale extraction of lutein and loroxanthin. The findings of this study provide strong support for the application of this technology to other species.


Assuntos
Microalgas , Scenedesmus , Luteína/química , Scenedesmus/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Carotenoides/química , Microalgas/metabolismo
2.
Microb Ecol ; 87(1): 52, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38498218

RESUMO

The use of algae for industrial, biotechnological, and agricultural purposes is spreading globally. Scenedesmus species can play an essential role in the food industry and agriculture due to their favorable nutrient content and plant-stimulating properties. Previous research and the development of Scenedesmus-based foliar fertilizers raised several questions about the effectiveness of large-scale algal cultivation and the potential effects of algae on associative rhizobacteria. In the microbiological practice applied in agriculture, bacteria from the genus Azospirillum are one of the most studied plant growth-promoting, associative, nitrogen-fixing bacteria. Co-cultivation with Azospirillum species may be a new way of optimizing Scenedesmus culturing, but the functioning of the co-culture system still needs to be fully understood. It is known that Azospirillum brasilense can produce indole-3-acetic acid, which could stimulate algae growth as a plant hormone. However, the effect of microalgae on Azospirillum bacteria is unclear. In this study, we investigated the behavior of Azospirillum brasilense bacteria in the vicinity of Scenedesmus sp. or its supernatant using a microfluidic device consisting of physically separated but chemically coupled microchambers. Following the spatial distribution of bacteria within the device, we detected a positive chemotactic response toward the microalgae culture. To identify the metabolites responsible for this behavior, we tested the chemoeffector potential of citric acid and oxaloacetic acid, which, according to our HPLC analysis, were present in the algae supernatant in 0.074 mg/ml and 0.116 mg/ml concentrations, respectively. We found that oxaloacetic acid acts as a chemoattractant for Azospirillum brasilense.


Assuntos
Azospirillum brasilense , Scenedesmus , Scenedesmus/metabolismo , Microfluídica , Ácido Oxaloacético/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Plantas/metabolismo
3.
Bioresour Technol ; 397: 130451, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38369079

RESUMO

Atmospheric precipitation deposits acid-forming substances into surface water. However, the effects of water-soluble components on microalgae proliferation are poorly understood. This study analysed the growth characteristics of three microalgae bioindicators of water quality: Scenedesmus quadricauda, Chlorella vulgaris, and Scenedesmus obliquus, adopting on-site monitoring, culture experiments simulating 96 types of water by supplementing anions and cations, and predictive modelling. The result quantified pH > 3.0 rain with dominant Ca2+, Mg2+, and K+ cations, together with anions of NO3- and SO42-. The presence of Ca2+ of up to 0.1 mM and Mg2+ concentrations (>0.5 mM) suppressed Scenedesmus quadricauda growth. Soluble ions, luminosity, and pH had significant impacts (p ≤ 0.01) on increased microalgae proliferation. A newly proposed microalgae growth model predicted a 10.7-fold increase in cell density six days post-incubation in the case of rainfall. The modelling supports algal outbreaks and delays prediction during regional water cycles.


Assuntos
Chlorella vulgaris , Microalgas , Scenedesmus , Chlorella vulgaris/metabolismo , Microalgas/metabolismo , Ânions , Cátions , Scenedesmus/metabolismo , Proliferação de Células
4.
Environ Sci Pollut Res Int ; 31(12): 18785-18796, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38349495

RESUMO

Recovering renewable chemicals from de-fatted microalgal residue derived from lipid extraction within the algal-derived biofuel sector is crucial, given the rising significance of microalgal-derived biodiesel as a potential substitute for petroleum-based liquid fuels. As a circular economy strategy, effective valorization of de-fatted biomass significantly improves the energetic and economic facets of establishing a sustainable algal-derived biofuel industry. In this scenario, this study investigates flash catalytic pyrolysis as a sustainable pathway for valorizing Scenedesmus sp. post-extraction residue (SPR), potentially yielding a bio-oil enriched with upgraded characteristics, especially renewable aromatic hydrocarbons. In the scope of this study, volatile products from catalytic and non-catalytic flash pyrolysis were characterized using a micro-furnace type temperature programmable pyrolyzer coupled with gas chromatographic separation and mass spectrometry detection (Py-GC/MS). Flash pyrolysis of SPR resulted in volatile products with elevated oxygen and nitrogen compounds with concentrations of 46.4% and 26.4%, respectively. In contrast, flash pyrolysis of lyophilized microalgal biomass resulted in lower concentrations of these compounds, with 40.9% oxygen and 17.3% nitrogen. Upgrading volatile pyrolysis products from SPR led to volatile products comprised of only hydrocarbons, while completely removing oxygen and nitrogen-containing compounds. This was achieved by utilizing a low-cost HZSM-5 catalyst within a catalytic bed at 500 °C. Catalytic experiments also indicate the potential conversion of SPR into a bio-oil rich in monocyclic aromatic hydrocarbons, primarily BETX, with toluene comprising over one-third of its composition, thus presenting a sustainable pathway for producing an aromatic hydrocarbon-rich bio-oil derived from SPR. Another significant finding was that 97.8% of the hydrocarbon fraction fell within the gasoline range (C5-C12), and 35.5% fell within the jet fuel range (C8-C16). Thus, flash catalytic pyrolysis of SPR exhibits significant promise for application in drop-in biofuel production, including green gasoline and bio-jet fuel, aligning with the principles of the circular economy, green chemistry, and bio-refinery.


Assuntos
Hidrocarbonetos Aromáticos , Óleos de Plantas , Polifenóis , Scenedesmus , Scenedesmus/metabolismo , Pirólise , Gasolina , Biocombustíveis , Temperatura Alta , Cromatografia Gasosa-Espectrometria de Massas , Hidrocarbonetos/química , Catálise , Nitrogênio , Oxigênio , Biomassa
5.
Biodegradation ; 35(1): 71-86, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37052742

RESUMO

This study presents the effect of ultra-violet (UV) light radiation on the process kinetics, metabolic performance, and biodegradation capability of Scenedesmus vacuolatus. The impact of the UV radiation on S. vacuolatus morphology, chlorophyll, carotenoid, carbohydrates, proteins, lipid accumulation, growth rate, substrate affinity and substrate versatility were evaluated. Thereafter, a preliminary biodegradative potential of UV-exposed S. vacuolatus on spent coolant waste (SCW) was carried out based on dehydrogenase activity (DHA) and total petroleum hydrocarbon degradation (TPH). Pronounced structural changes were observed in S. vacuolatus exposed to UV radiation for 24 h compared to the 2, 4, 6, 12 and 48 h UV exposure. Exposure of S. vacuolatus to UV radiation improved cellular chlorophyll (chla = 1.89-fold, chlb = 2.02-fold), carotenoid (1.24-fold), carbohydrates (4.62-fold), proteins (1.44-fold) and lipid accumulations (1.40-fold). In addition, the 24 h UV exposed S. vacuolatus showed a significant increase in substrate affinity (1/Ks) (0.959), specific growth rate (µ) (0.024 h-1) and biomass accumulation (0.513 g/L) by 1.50, 2 and 1.9-fold respectively. Moreover, enhanced DHA (55%) and TPH (100%) degradation efficiency were observed in UV-exposed S. vacuolatus. These findings provided major insights into the use of UV radiation to enhance S. vacuolatus biodegradative performance towards sustainable green environment negating the use of expensive chemicals and other unfriendly environmental practices.


Assuntos
Scenedesmus , Raios Ultravioleta , Scenedesmus/metabolismo , Clorofila/metabolismo , Clorofila/farmacologia , Carotenoides/metabolismo , Carotenoides/farmacologia , Carboidratos/farmacologia , Lipídeos/farmacologia , Biodegradação Ambiental
6.
ACS Synth Biol ; 12(11): 3463-3481, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37852251

RESUMO

Green microalgae have emerged as beneficial feedstocks for biofuel production. A systems-level understanding of the biochemical network is needed to harness the microalgal metabolic capacity for bioproduction. Genome-scale metabolic modeling (GEM) showed immense potential in rational metabolic engineering, utilizing biochemical flux distribution analysis. Here, we report the first GEM for the green microalga, Scenedesmus obliquus (iAR632), a promising biodiesel feedstock with high lipid-storing capability. iAR632 comprises 1467 reactions, 734 metabolites, and 632 genes distributed among 7 compartments. The model was optimized under three different trophic modes of microalgal cultivation, i.e., autotrophy, mixotrophy, and heterotrophy. The robustness of the reconstructed network was confirmed by analyzing its sensitivity to the biomass components. Pathway-level flux profiles were analyzed, and significant flux space expansion was noticed majorly in reactions associated with lipid biosynthesis. In agreement with the experimental observation, iAR632 predicted about 3.8-fold increased biomass and almost 4-fold higher lipid under mixotrophy than the other trophic modes. Thus, the assessment of the condition-specific metabolic flux distribution of iAR632 suggested that mixotrophy is the preferred cultivation condition for improved microalgal growth and lipid production. Overall, the reconstructed GEM and subsequent analyses will provide a systematic framework for developing model-driven strategies to improve microalgal bioproduction.


Assuntos
Microalgas , Scenedesmus , Scenedesmus/genética , Scenedesmus/metabolismo , Biomassa , Microalgas/genética , Microalgas/metabolismo , Biocombustíveis , Lipídeos/genética
7.
Mar Drugs ; 21(7)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37504942

RESUMO

Microalgae attract interest worldwide due to their potential for several applications. Scenedesmus is one of the first in vitro cultured algae due to their rapid growth and handling easiness. Within this genus, cells exhibit a highly resistant wall and propagate both auto- and heterotrophically. The main goal of the present work is to find scalable ways to produce a highly concentrated biomass of Scenedesmus rubescens in heterotrophic conditions. Scenedesmus rubescens growth was improved at the lab-scale by 3.2-fold (from 4.1 to 13 g/L of dry weight) through medium optimization by response surface methodology. Afterwards, scale-up was evaluated in 7 L stirred-tank reactor under fed-batch operation. Then, the optimized medium resulted in an overall productivity of 8.63 g/L/day and a maximum biomass concentration of 69.5 g/L. S. rubescens protein content achieved approximately 31% of dry weight, similar to the protein content of Chlorella vulgaris in heterotrophy.


Assuntos
Chlorella vulgaris , Microalgas , Scenedesmus , Processos Heterotróficos , Scenedesmus/metabolismo , Biomassa , Microalgas/metabolismo
8.
Molecules ; 28(12)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37375329

RESUMO

Prothioconazole (PTC) is a broad-spectrum triazole fungicide with one asymmetric center and consists of two enantiomers, R-(-)-PTC and S-(+)-PTC. To address the concern of its environmental safety, the enantioselective toxic effects of PTC on Scendesmus obliquus (S. obliquus) were investigated. PTC racemates (Rac-PTC) and enantiomers exhibited dose-dependent acute toxicity effects against S. obliquus at a concentration from 1 to 10 mg·L-1. The 72 h-EC50 value of Rac-, R-(-)-, and S-(+)-PTC is 8.15, 16.53, and 7.85 mg·L-1, respectively. The growth ratios and photosynthetic pigment contents of the R-(-)-PTC treatment groups were higher than the Rac- and S-(+)-PTC treatment groups. Both catalase (CAT) activities and esterase activities were inhibited in the Rac- and S-(+)-PTC treatment groups at high concentrations of 5 and 10 mg·L-1, and the levels of malondialdehyde (MDA) were elevated, which exceeded the levels in algal cells for the R-(-)-PTC treatment groups. PTC could disrupt the cell morphology of S. obliquus and induce cell membrane damage, following the order of S-(+)-PTC ≈ Rac-PTC > R-(-)-PTC. The enantioselective toxic effects of PTC on S. obliquus provide essential information for its ecological risk assessment.


Assuntos
Clorofíceas , Scenedesmus , Scenedesmus/metabolismo , Estereoisomerismo , Antioxidantes/farmacologia , Triazóis/toxicidade , Triazóis/metabolismo , Clorofíceas/metabolismo
9.
J Environ Manage ; 344: 118388, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37354597

RESUMO

Ciprofloxacin (CIP) and norfloxacin (NOR) belong to the organic contaminants of emerging concern (OCECs) that are frequently detected in wastewater matrices at ng/L to mg/L concentrations. This study investigates the potential of Scenedesmus obliquus in the treatment of CIP and NOR as a binary mixture from raw wastewater. Optimization of inoculum was done to find the required cell density concentration that has less inhibition and high removal. The optimum inoculum (cell density: 200 × 105 cells/mL and OD680: 1.0) has shown 75% removal with no inhibition of growth. A pilot scale study was conducted in controlled environment using high-rate algal pond to investigate the contribution of abiotic and biotic removal. Abiotic removal is negligible in comparison with the biotic contribution of removal. The order of removal efficiency is observed as COD (88%) > NOR (84.8%) > CIP (84.6%) > NH4+ (71.7%) with biodegradation as the major removal mechanism. Biotransformed products of CIP + NOR were identified inside the Scenedesmus obliquus. During the pilot-scale study, Biomass (3.70 ± 0.07 g/L) was harvested with carbohydrates (17.85 ± 0.1%), lipids (38.36 ± 0.13%), and proteins (28.18 ± 1.63%). Lipid productivity in binary mixture was 2.6 times higher than the lipid production in control condition. Transesterification of these lipids yielded good biofuel composition of 32.72% of saturated fatty acids and 21.7% of unsaturated fatty acids.


Assuntos
Microalgas , Scenedesmus , Biocombustíveis , Scenedesmus/metabolismo , Norfloxacino , Águas Residuárias , Projetos Piloto , Microalgas/metabolismo , Biotransformação , Ácidos Graxos/metabolismo , Biomassa
10.
Environ Sci Pollut Res Int ; 30(27): 70246-70259, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37145361

RESUMO

Due to their remarkable properties, the applications of carbon-based nanomaterials (CNMs) such as graphene and functionalized multi-walled carbon nanotubes (f-MWCNTs) are increasing. These CNMs can enter the freshwater environment via numerous routes, potentially exposing various organisms. The current study assesses the effects of graphene, f-MWCNTs, and their binary mixture on the freshwater algal species Scenedesmus obliquus. The concentration for the individual materials was kept at 1 mg L-1, while graphene and f-MWCNTs were taken at 0.5 mg L-1 each for the combination. Both the CNMs caused a decrease in cell viability, esterase activity, and photosynthetic efficiency in the cells. The cytotoxic effects were accompanied by increased hydroxyl and superoxide radical generation, lipid peroxidation, antioxidant enzyme activity (catalase and superoxide dismutase), and mitochondrial membrane potential. Graphene was more toxic compared to f-MWCNTs. The binary mixture of the pollutants demonstrated a synergistic enhancement of the toxic potential. Oxidative stress generation played a critical role in toxicity responses, as noted by a strong correlation between the physiological parameters and the biomarkers of oxidative stress. The outcomes from this study emphasize the significance of considering the combined effects of various CNMs as part of a thorough evaluation of ecotoxicity in freshwater organisms.


Assuntos
Grafite , Microalgas , Nanotubos de Carbono , Scenedesmus , Poluentes Químicos da Água , Grafite/toxicidade , Microalgas/metabolismo , Scenedesmus/metabolismo , Nanotubos de Carbono/toxicidade , Estresse Oxidativo , Antioxidantes/metabolismo , Água Doce , Poluentes Químicos da Água/toxicidade
11.
Chemosphere ; 334: 138932, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37209846

RESUMO

Microalgae such as Chlorella pyrenoidosa, Scenedesmus obliquus and Chlorella sorokiniana were cultivated in domestic wastewater for biohydrogen production. The comparison between the microalgae was executed based on biomass productions, biochemical yields and nutrient removal efficiencies. S. obliquus showed the possibility of growing in domestic wastewater reaching maximum biomass production, lipid, protein, carbohydrate yield and nutrient removal efficiency. All the three microalgae reached high biomass production of 0.90, 0.76 and, 0.71 g/L, respectively for S. obliquus, C. sorokiniana and C. pyrenoidosa. A higher protein content (35.76%) was obtained in S. obliquus. A similar pattern of lipid yield (25.34-26.23%) and carbohydrate yield (30.32-33.21%) was recorded in all selected microalgae. Chlorophyll-a content was higher in synthetic media-grown algae compared algae grown in wastewater. The maximum nutrient removal efficiencies achieved were 85.54% of nitrate by C. sorokiniana, 95.43% of nitrite by C. pyrenoidosa, ∼100% of ammonia and 89.34% of phosphorus by C. sorokiniana. An acid pre-treatment was applied to disintegrate the biomass of microalgae, followed by dark fermentation in batch mode to produce hydrogen. During fermentation process, polysaccharides, protein and lipids were consumed. Maximum hydrogen production of 45.50 ± 0.32 mLH2/gVS, 38.43 ± 0.42 mLH2/gVS and 34.83 ± 1.82 mL/H2/gVS was achieved by C. pyrenoidosa, S. obliquus and C. sorokiniana respectively. Overall, the results revealed the potential of microalgal cultivation in wastewater coupled with maximum biomass production lead to biohydrogen generation for environmental sustainability.


Assuntos
Chlorella , Microalgas , Scenedesmus , Purificação da Água , Águas Residuárias , Chlorella/metabolismo , Microalgas/metabolismo , Scenedesmus/metabolismo , Biocombustíveis , Carboidratos , Proteínas/metabolismo , Lipídeos , Hidrogênio/metabolismo
12.
Plant Physiol Biochem ; 197: 107664, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36996635

RESUMO

Both Bisphenol A (BPA) and polystyrene nanoplastics (PSNPs) are routinely found in several consumer products such as packaging materials, flame retardants, and cosmetics. The environment is seriously endangered by nano- and microplastics. In addition to harming aquatic life, nanoplastics (NPs) also bind to other pollutants, facilitating their dispersion in the environment and possibly promoting toxicity induced by these pollutants. The toxic effects of polystyrene nanoplastics (PS-NPs) and BPA were examined in this study, as well as the combined toxic impacts of these substances on the freshwater microalgae Scenedesmus obliquus. In addition, the exopolymeric substances (EPS) secreted by algae will interact with the pollutants modifying their physicochemical behaviour and fate. This work aimed to investigate how algal EPS alters the combined effects of BPA and PSNPs on the microalgae Scenedesmus obliquus. The algae were exposed to binary mixtures of BPA (2.5, 5, and 10 mg/L) and PSNPs (1 mg/L of plain, aminated, and carboxylated PSNPs) with EPS added to the natural freshwater medium. Cell viability, hydroxyl and superoxide radical generation, cell membrane permeability, antioxidant enzyme activity (catalase and superoxide dismutase), and photosynthetic pigment content were among the parameters studied to determine the toxicity. It was observed that for all the binary mixtures, the carboxylated PSNPs were most toxic when compared to the toxicity induced by the other PSNP particles investigated. The maximum damage was observed for the mixture of 10 mg/L of BPA with carboxylated PSNPs with a cell viability of 49%. When compared to the pristine mixtures, the EPS-containing mixtures induced significantly reduced toxic effects. A considerable decrease in reactive oxygen species levels, activity of antioxidant enzymes (SOD and CAT), and cell membrane damage was noted in the EPS-containing mixtures. Reduced concentrations of the reactive oxygen species led to improved photosynthetic pigment content in the cells.


Assuntos
Microplásticos , Scenedesmus , Poluentes Químicos da Água , Antioxidantes/metabolismo , Água Doce/química , Microplásticos/metabolismo , Microplásticos/farmacologia , Nanopartículas/toxicidade , Nanopartículas/química , Poliestirenos/toxicidade , Poliestirenos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Scenedesmus/efeitos dos fármacos , Scenedesmus/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo
13.
Artigo em Inglês | MEDLINE | ID: mdl-36858140

RESUMO

During the COVID-19 pandemic billions of face masks were used since they became a necessity in everyone's lives. But these were not disposed properly and serve as one of the most significant sources of micro and nano plastics in the environment. The effects of mask leached plastics in aquatic biota remains largely unexplored. In this work, we quantified and characterized the released microplastics from the three layers of the mask. The outer layer of the face mask released more microplastics i.e., polypropylene than middle and inner layers. We investigated and compared the acute toxic effects of the released microplastics between Scenedesmus obliquus and Chlorella sp. The results showed a decrease in cell viability, photosynthetic yield, and electron transport rate in both the algal species. This was accompanied by an increase in oxidative stress markers such reactive oxygen species (ROS) and malondialdehyde (MDA) content. There was also a significant rise of antioxidant enzymes such as superoxide dismutase (SOD) and catalase (CAT) in both the algal cells. Furthermore, morphological changes like cell aggregation and surface chemical changes in the algae were ascertained by optical microscopy and FTIR spectroscopy techniques, respectively. The tests confirmed that Scenedesmus obliquus was more sensitive than Chlorella sp. to the mask leachates. Our study clearly revealed serious environmental risk posed by the released microplastics from surgical face masks. Further work with other freshwater species is required to assess the environmental impacts of the mask leachates.


Assuntos
COVID-19 , Chlorella , Microalgas , Scenedesmus , Poluentes Químicos da Água , Humanos , Microplásticos/metabolismo , Scenedesmus/metabolismo , Máscaras , Pandemias , Plásticos , Poluentes Químicos da Água/metabolismo
14.
Bioresour Technol ; 375: 128828, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36878375

RESUMO

This study aims at evaluating an innovative biotechnological process for the concomitant bioremediation and valorization of wastewater from textile digital printing technology based on a microalgae/bacteria consortium. Nutrient and colour removal were assessed in lab-scale batch and continuous experiments and the produced algae/bacteria biomass was characterized for pigment content and biomethane potential. Microbial community analysis provided insight of the complex community structure responsible for the bioremediation action. Specifically, a community dominated by Scenedesmus spp. and xenobiotic and dye degrading bacteria was naturally selected in continuous photobioreactors. Data confirm the ability of the microalgae/bacteria consortium to grow in textile wastewater while reducing the nutrient content and colour. Improvement strategies were eventually identified to foster biomass growth and process performances. The experimental findings pose the basis of the integration of a microalgal-based process into the textile sector in a circular economy perspective.


Assuntos
Corantes , Microalgas , Scenedesmus , Têxteis , Águas Residuárias , Bactérias/metabolismo , Biomassa , Microalgas/crescimento & desenvolvimento , Microalgas/metabolismo , Nitrogênio , Fotobiorreatores/microbiologia , Scenedesmus/metabolismo , Corantes/farmacologia
15.
J Environ Manage ; 332: 117388, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36731413

RESUMO

Neonicotinoids, as the most widely used pesticides in the world, help improve the production of crops. Meanwhile, it also brings potential threats to surrounding environments and other organisms because of its wide use and even abuse. In this study, Scenedesmus sp. TXH isolated from a wastewater treatment plant was used to remove the neonicotinoid pesticide thiamethoxam (THIA). The removal efficiency, degradation pathway, metabolite fate of THIA and physicochemical effects on microalgae cells were studied. Meanwhile, the feasibility of using microalgal technology to remove THIA from municipal wastewater was also explored. The results showed that 5-40 mg/L of THIA slightly promoted the growth of microalgae, while 60 mg/L THIA severely inhibited microalgal growth. It was observed that malondialdehyde content and superoxide dismutase activity in 60 mg/L THIA group increased significantly (p < 0.05) in the early stage of the experiment, indicating that THIA caused oxidative damage to microalgae. Scenedesmus sp. TXH showed high-efficient degradation ability and high resistance to THIA, with 100% removal of THIA at 5, 20 and 40 mg/L groups and 97.5% removal of THIA at 60 mg/L group on day 12. THIA was mainly removed by biodegradation, accounting for 78.18%, 93.50%, 96.81% and 91.35% under 5, 20, 40 and 60 mg/L on day 12, respectively. Six degradation products were identified, and four potential degradation pathways were proposed. In practical wastewater, the removal efficiency of total dissolved nitrogen, total dissolved phosphorus, ammonia nitrogen and THIA reached 85.68%, 90.00%, 98.43% and 100%, respectively, indicating that Scenedesmus sp. TXH was well adapted to the wastewater and effectively removed THIA and conventional pollutants.


Assuntos
Microalgas , Scenedesmus , Tiametoxam/metabolismo , Águas Residuárias , Scenedesmus/química , Scenedesmus/metabolismo , Microalgas/metabolismo , Nitrogênio/metabolismo , Água Doce , Biomassa
16.
Proteins ; 91(6): 750-770, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36607613

RESUMO

Lignocellulose is the most abundant natural biopolymer on earth and a potential raw material for the production of fuels and chemicals. However, only some organisms such as bacteria and fungi produce enzymes that metabolize this polymer. In this work we have demonstrated the presence of cellulolytic activity in the supernatant of Scenedesmus quadricauda cultures and we identified the presence of extracellular cellulases in the genome of five Scenedesmus species. Scenedesmus is a green alga which grows in both freshwater and saltwater regions as well as in soils, showing highly flexible metabolic properties. Sequence comparison of the different identified cellulases with hydrolytic enzymes from other organisms using multisequence alignments and phylogenetic trees showed that these proteins belong to the families of glycosyl hydrolases 1, 5, 9, and 10. In addition, most of the Scenedesmus cellulases showed greater sequence similarity with those from invertebrates, fungi, bacteria, and other microalgae than with the plant homologs. Furthermore, the data obtained from the three dimensional structure showed that both, their global structure and the main amino acid residues involved in catalysis and substrate binding are well conserved. Based on our results, we propose that different species of Scenedesmus could act as biocatalysts for the hydrolysis of cellulosic biomass produced from sunlight.


Assuntos
Celulases , Scenedesmus , Scenedesmus/metabolismo , Filogenia , Celulases/genética , Celulases/metabolismo , Bactérias/metabolismo , Hidrólise , Fungos/metabolismo
17.
Environ Pollut ; 319: 120987, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36592883

RESUMO

The contamination of the aquatic environment with microplastics has become a global environmental concern. Microplastic particles can be shredded to form smaller nanoplastics, and knowledge on their impacts on phytoplankton, especially freshwater microalgae, is still limited. To investigate this issue, the microalga Scenedesmus quadricauda was exposed to polystyrene nanoplastics (PS-NPs) of five concentrations (10, 25, 50, 100, and 200 mg/L). The growth; the contents of antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD); the chlorophyll content; and concentrations of soluble protein and soluble polysaccharide were accordingly measured. The results showed that the microalgal density increased with the increase of the polystyrene nanoplastic concentrations, and the physiological features of alga were enhanced after the stimulation of nanoplastics. Furthermore, a high concentration (200 mg/L) of nanoplastics increased the contents of chlorophyll, soluble protein, and polysaccharide (P < 0.05). The antioxidant enzyme activities of Scenedesmus quadricauda were significantly activated by nanoplastics. Lastly, we propose three possible algal recovery mechanisms in response to nanoplastics in which Scenedesmus quadricauda was tolerant with PS-NPs by cell wall thickening, internalization, and aggregation. The results of this study contribute to understanding of the ecological risks of nanoplastics on freshwater microalgae.


Assuntos
Microalgas , Scenedesmus , Poluentes Químicos da Água , Poliestirenos/química , Antioxidantes/metabolismo , Microplásticos/toxicidade , Microplásticos/metabolismo , Plásticos/metabolismo , Microalgas/metabolismo , Clorofila/metabolismo , Scenedesmus/metabolismo , Poluentes Químicos da Água/metabolismo
18.
Microb Biotechnol ; 16(2): 448-462, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35914242

RESUMO

Certain microalgal species can grow under high CO2 concentrations providing potential for mitigating CO2 pollution in flue gas produced by power plants. Microalga Scenedesmus obliquus strain HTB1 was isolated from the Chesapeake Bay and grow rapidly in a high level of CO2 . However, little is known about the molecular responses of HTB1 to high CO2 levels. Here, we investigated how HTB1 responds to 10% CO2 using the time-resolved transcriptome analysis. Gene expression profiles indicated that HTB1 responds quickly (in 2 h) and becomes adaptive within 12 h when exposed to 10% CO2 . Interestingly, certain genes of light-harvesting, chlorophyll synthesis and carbon fixation (i.e. rbcS) were up-regulated at 10% CO2 , and these functional responses are consistent with the increased photosynthesis efficiency and algal biomass under 10% CO2 . Nitrate assimilation was strongly enhanced, with amino acid biosynthesis and aminoacyl tRNA biosynthesis genes being markedly up-regulated, indicating that HTB1 actively takes up nitrogen and accelerates protein synthesis at 10% CO2 . Carbon metabolism including fatty acid biosynthesis and TCA cycle was enhanced at 10% CO2 , supporting the earlier observation of increased lipid content of Scenedesmus sp. under high CO2 levels. Interestingly, key genes like RuBisCO (rbcL) and carbonic anhydrase in carboxysomes did not respond actively to 10% CO2 , implying that exposure to 10% CO2 has little impact on the carbon concentrating mechanisms and CO2 fixation of the Calvin cycle. It appears that HTB1 can grow rapidly at 10% CO2 without significant metabolic changes in carbon fixation and ATP synthesis.


Assuntos
Microalgas , Scenedesmus , Dióxido de Carbono/metabolismo , Scenedesmus/metabolismo , Fotossíntese , Nitrogênio/metabolismo , Biomassa , Perfilação da Expressão Gênica , Microalgas/metabolismo
19.
Environ Sci Pollut Res Int ; 30(6): 15808-15820, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36175727

RESUMO

Bioethanol production from algal biomass is a promising alternative for sustainable biofuel production. Algae possess a high photosynthetic capacity and an adaptive ability to thrive under harsh environmental conditions. The potential properties of Scenedesmus acuminatus CCALA 436 were assessed in this research for its bioethanol efficiency, and the effects of growing the algae in wastewater and at different concentrations of mepiquat chloride were studied. Also, pre-treatment efficiencies of different concentrations of calcium oxide were carried out on microalgae biomass. Superoxide dismutase, catalase activity, glutathione, and malondialdehyde contents of microalgae were examined, and the changes in chlorophyll, photoprotective carotenoid contents, and protein concentrations were determined. The results revealed that the maximum sugar and ethanol contents of Scenedesmus acuminatus CCALA 436 were 44.7 ± 1.5% and 20.32 g/L, respectively, for 50% wastewater and mepiquat chloride (2.5 mg/L) after pre-treatment with calcium oxide (0.08%). Additionally, the levels of oxidative enzymes varied depending on the wastewater concentrations. These findings indicate Scenedesmus acuminatus CCALA 436 grown in wastewater and mepiquat chloride can be used for the treatment of wastewater and the production of ethanol and high-value products such as carotenoid.


Assuntos
Microalgas , Scenedesmus , Águas Residuárias , Scenedesmus/metabolismo , Biomassa , Carotenoides/metabolismo , Microalgas/metabolismo , Biocombustíveis
20.
Environ Res ; 218: 115051, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36521544

RESUMO

In this study, an efficient microalgal strain SD07 was isolated from pond wastewater and identified as Scenedesmus sp. using the 18S rRNA gene sequence analysis. The strain SD07 was grown in a variety of concentrations (25-100%) of municipal wastewater. Scenedesmus sp. strain SD07 grown in 75% diluted wastewater produced a higher amount of biomass (1.93 ± 0.10 g L-1), and removal of chemical oxygen demand (COD), ammonium (NH4+), total nitrogen (TN) and total phosphate (TP) by 91.36%, 88.41%, 93.26% and 96.32%, respectively from wastewater. The harvested strain SD07 biomass has protein, carbohydrate and lipid contents of 35%, 20.4% and 33%, respectively. Fatty acid profiles revealed that the strain SD07 lipids mainly consist of palmitic acid (40.5%), palmitoleic acid (19%), linoleic acid (17%) and oleic acid (13.2%). Furthermore, strain SD07 cultured in 75% diluted wastewater produced 378 mg L-1 of exopolysaccharides (EPS). The EPS was utilized as a biostimulant in the cultivation of Solanum lycopersicum under salinity stress. In summary, these findings suggest that this Scenedesmus sp. strain SD07 can be employed for wastewater treatment as well as the production of valuable biomass, high-quality algal oil and EPS.


Assuntos
Microalgas , Scenedesmus , Águas Residuárias , Scenedesmus/metabolismo , Biocombustíveis/análise , Ácidos Graxos/metabolismo , Fosfatos/análise , Biomassa , Nitrogênio/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...